Welcome

Environmental Advisory Board Meeting

Robins Air Force Base February 13, 2020

1

Welcome and Program Introduction

Laurel Cordell EAB Manager

- 3-D 3-Dimensional
- AS Air Sparging
- AST Aboveground Storage Tank
- BDL Below Detection Limit
- CAO Corrective Action Objectives
- CAP Corrective Action Plan
- CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
- COC Contaminant of Concern
- CSM Conceptual Site Model

- **CT Carbon Tetrachloride**
- DPT Direct Push Technology
- ERD Enhanced Reductive Dechlorination
- ERP Environmental Restoration Program
- EVS Earth Volumetric Studio
- GBIA Greater Base Industrial Area
- HVE High Vacuum Extraction
- iSOC In Situ Submerged Oxygen Curtain
- ISCO In Situ Chemical Oxidation
- ISTT In Situ Thermal Treatment

- ITRC Interstate Technology & Regulatory Council
- KMnO₄ Potassium Permanganate
- LNAPL Light Non-Aqueous Phase Liquid
- MNA Monitored Natural Attenuation
- MPE Multi-Phase Extraction
- μg/L microgram per liter
- OES Optimized Exit Strategy
- O&M Operation and Maintenance
- OM&M Operation, Maintenance, and Monitoring
- PCE Tetrachloroethene

- **RC Response Complete**
- RCRA Resource Conservation and Recovery Act
- RFI RCRA Facility Investigation
- RL Remediation Level
- SSI Supplemental Site Investigation
- SVE Soil Vapor Extraction
- SWMU Solid Waste Management Unit
- TCE Trichloroethene
- VOC Volatile Organic Compound

Environmental Advisory Board

Update on Progress at Select Restoration Sites

Mike Perlmutter, P.E., Technical Lead Jacobs

> Adam Forsberg Hydrogeologist Jacobs

February 13, 2020

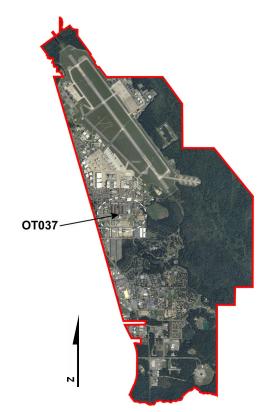
- Solid Waste Management Unit (SWMU) 62 (OT037)
- SWMU 47 (CG504)
- SWMU 36 (DC034)

Environmental Advisory Board

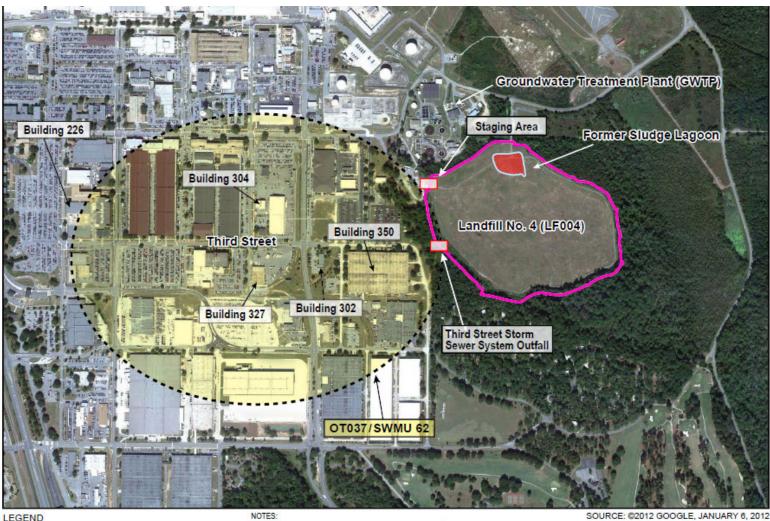
SWMU 62 (OT037) Update on Progress

Mike Perlmutter, P.E. Technical Lead Jacobs

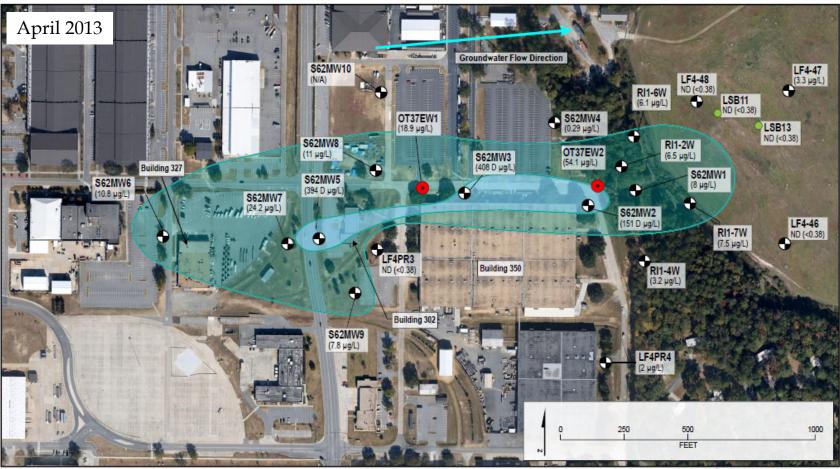
February 13, 2020


Overview

- Background
- Site location
- Remediation progress
- Path forward


Background

- Primary contaminants of concern in groundwater are tetrachloroethene (PCE), trichloethene (TCE), and carbon tetrachloride (CT)
- Originally identified in 1990, the groundwater plume is associated with a 48-inch storm sewer outfall (Third Street outfall) and other potential sources in the area
- Original remedy implemented in 2001
 - Groundwater extraction using two recovery wells
- Contract objective: Response Complete (RC) → Remediation Levels (RLs) at every site monitoring well



Site Location

LEGEND

- MONITORING WELL
 - EXTRACTION WELL
- SURFICIAL WELL
- APPROXIMATE DIRECTION OF GROUNDWATER FLOW

TCE

5 µg/L

100 µg/L

- NOTES: 1. µg/L
 - 1. µg/L = CONCENTRATIONS IN MICROGRAM(S) PER LITER
 - 2. NO. = NUMBER
 - 3. SWMU = SOLID WASTE MANAGEMENT UNIT
 - 4. THE PLUME SHOWN ON THIS FIGURE DEPICTS THE TRICHLOROETHENE CONCENTRATIONS DURING APRIL 2013.

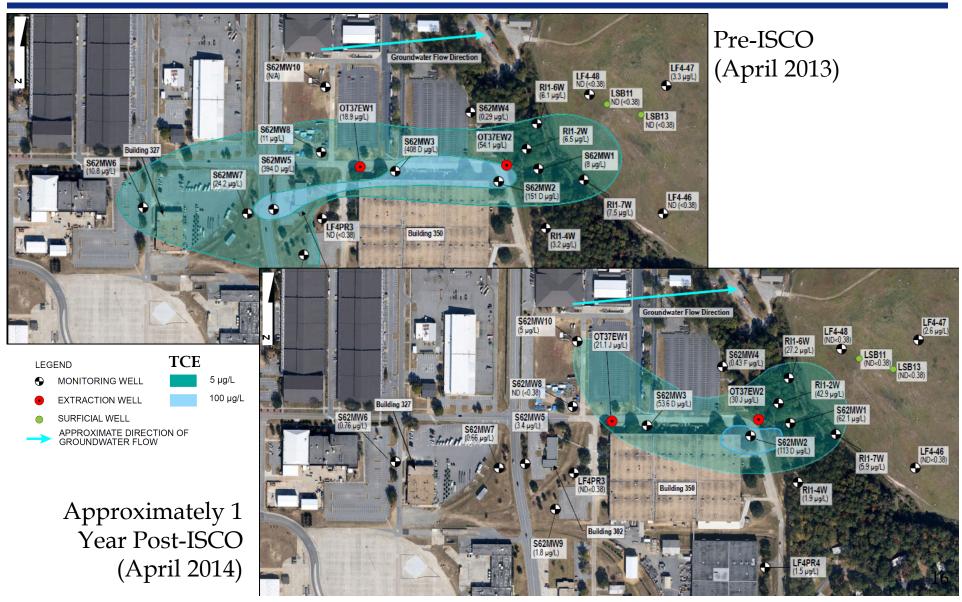
SOURCE: ©2013 Google, DECEMBER 2013

DATA QUALIFIERS:

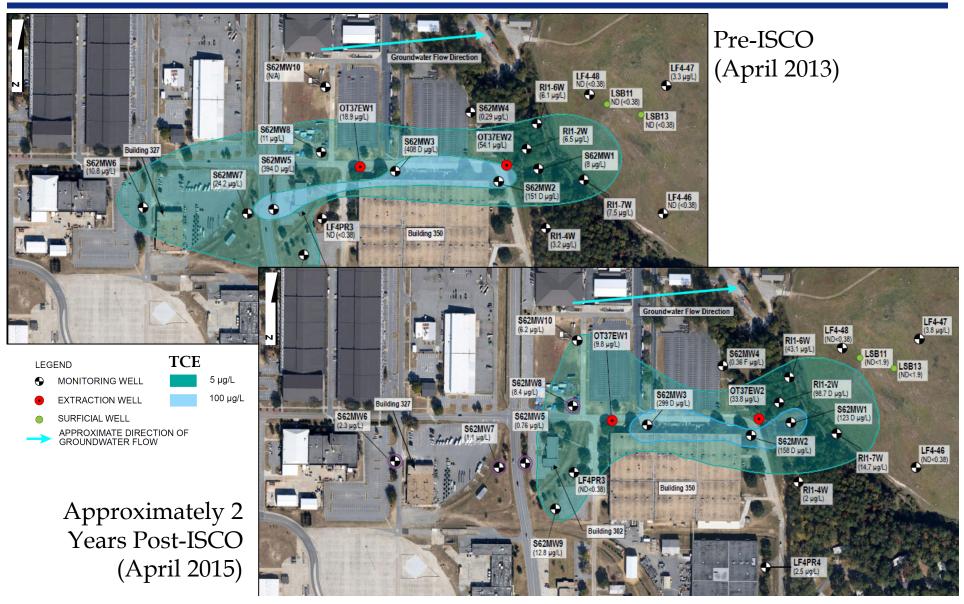
- 1. D = THE RESULT IS FROM A DILUTED ANALYSIS.
- 2. N/A = NOT AVAILABLE; WELL INSTALLED IN JUNE 2013;
- THEREFORE, NO DATA ARE AVAILABLE. 3. ND = NOT DETECTED, VALUE SHOWN IS METHOD
- DETECTION LIMIT

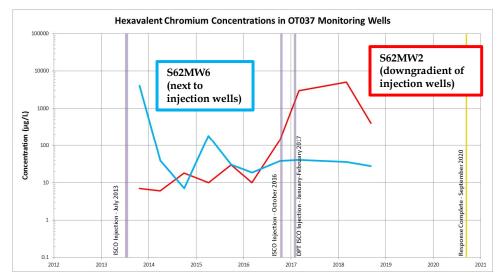
New remedy implemented in 2013

- Groundwater extraction wells shut down
- In situ chemical oxidation (ISCO) using potassium permanganate (KMnO₄)
- Injected 240,000 gallons of 3 percent KMnO₄ in 22 injection wells in May and June

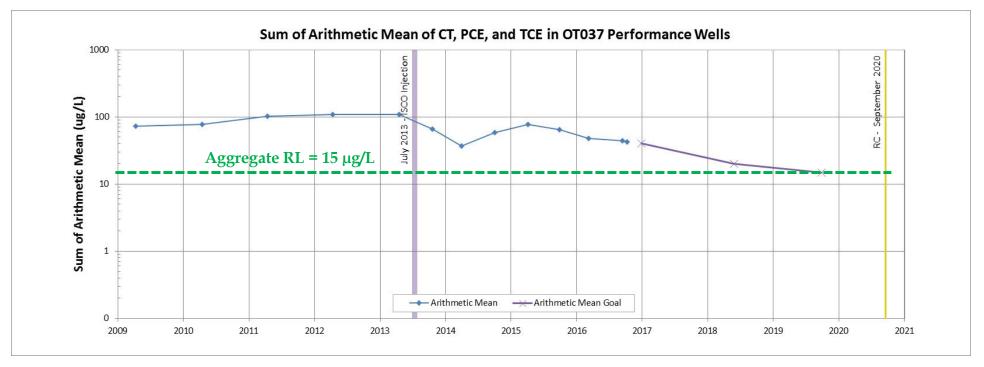

Oxidant Injection

Oxidant Injection

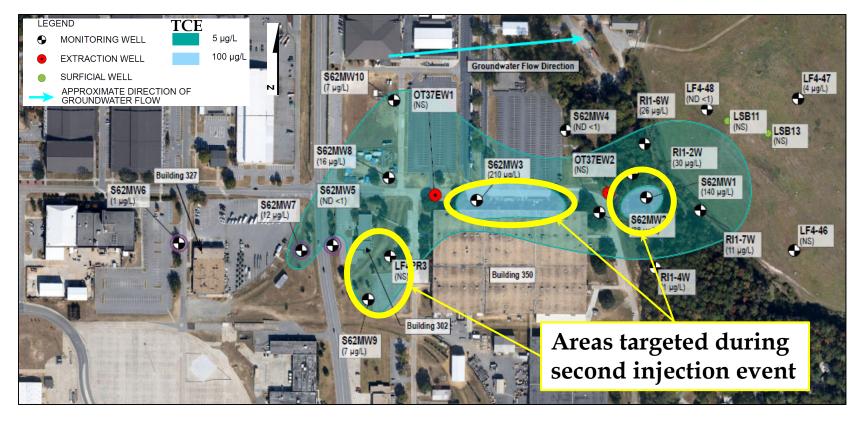




- ISCO can mobilize naturally present metals due to redox changes
- Metals concentrations increased after the first injection and then gradually decreased



- Initial performance metrics
 - Gradual reduction in TCE concentrations at S62MW1, S62MW2, S62MW3, S62MW5, and S62MW6
 - Achieve RLs by 2020
- Performance metrics revised in 2015
 - Reduce the sum of CT, PCE, and TCE concentrations at each of 17 performance monitoring wells by 50 percent as compared to April 2015
 - Reduce the sum of CT, PCE, and TCE concentrations at each of 17 performance monitoring wells by 75 percent as compared to April 2015
 - Achieve CT, PCE, and TCE RLs at each of 17 performance monitoring wells


Aggregate trends

*Data from 17 wells used to assess remediation progress

Implementation of second ISCO injection event to address recalcitrant areas

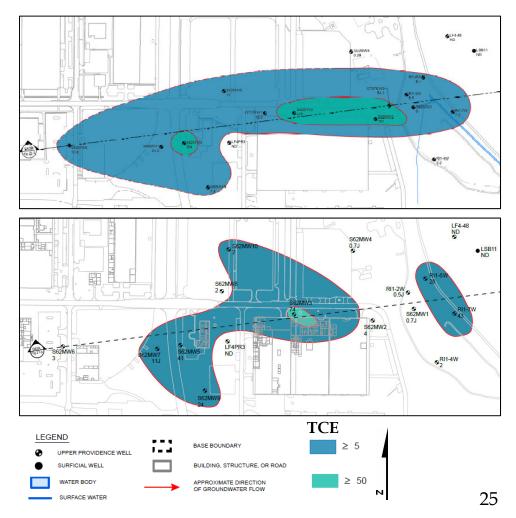
- Second injection event included two phases:
 - October 2016: Injection into four existing injection wells to target areas within the original injection well network
 - 60,000 gallons of 1.5% KMnO₄ solution
 - February 2017: Injection into nine direct push technology (DPT) locations to target areas outside the original injection well network
 - 45,000 gallons of 2% KMnO₄ solution injected upgradient of RI1-2W and S62MW1

Location	Screen Interval (feet bgs)	Treatment Volume (gallons)	KMnO ₄ (lbs)
T3IW1	48 - 58	15,000	2,000
T3IW2	48 - 58	15,000	2,000
T5IW1	46 - 56	15,000	2,000
T5IW2	40 - 50	15,000	2,000
IP-01	47 – 57	5,000	1,200
IP-02	47 – 57	5,000	1,200
IP-03	30 - 40	5,000	1,200
IP-04	30 - 40	5,000	1,200
IP-05	30 - 40	5,000	1,200
IP-06	30 - 40	5,000	1,200
IP-07	30 - 40	5,000	1,200
IP-08	30 - 40	5,000	1,200
IP-09	30 - 40	5,000	1,200
Total	—	105,000	18,800

Addition of dry $KMnO_4$ to prepare 1.5% oxidant solution

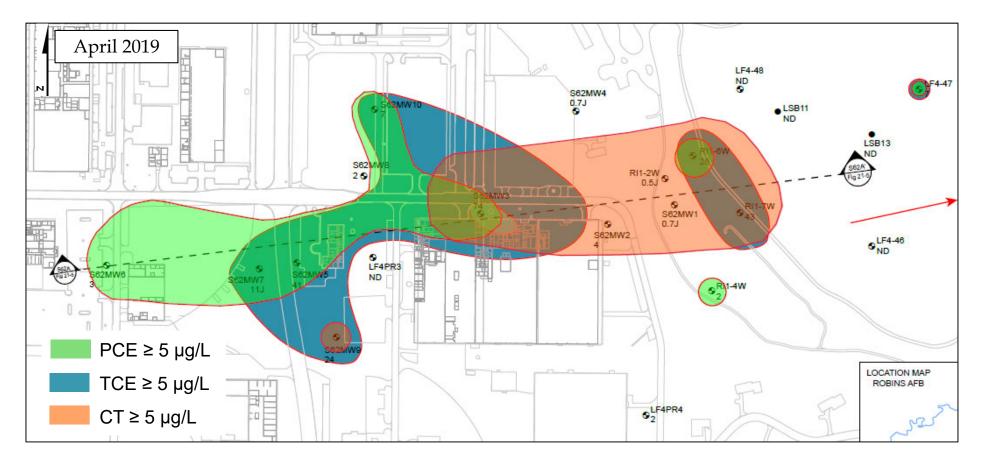
1.5% oxidant solution secondary containment during injection

Current Status

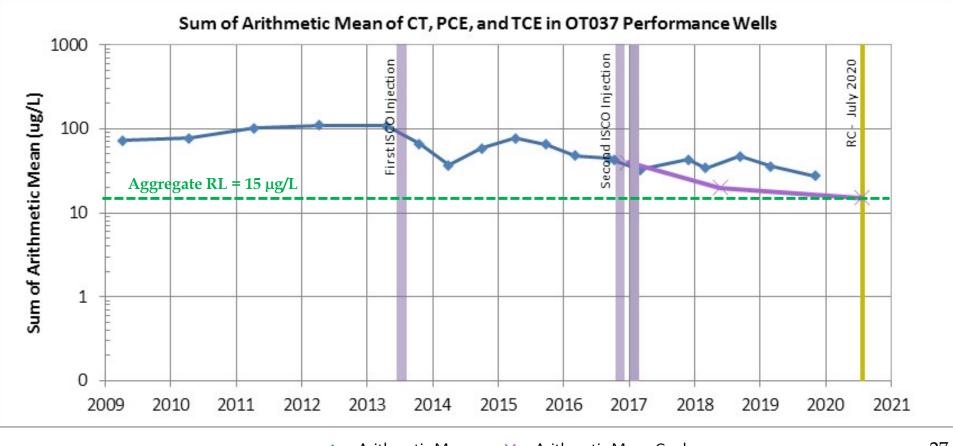

Performance Metrics

- Wells at 50% reduction (or RLs): 8 of 17
- Wells at 75% reduction (or RLs): 7 of 17
- Wells at RLs: 4 of 17

Overall Progress since 2013


- Average PCE concentration reduced by 70 percent
- Average TCE concentration reduced by 85 percent
- Average CT concentration reduced by 70 percent

TCE plume from 2013 to 2019


Current extent of PCE, TCE, and CT exceedances

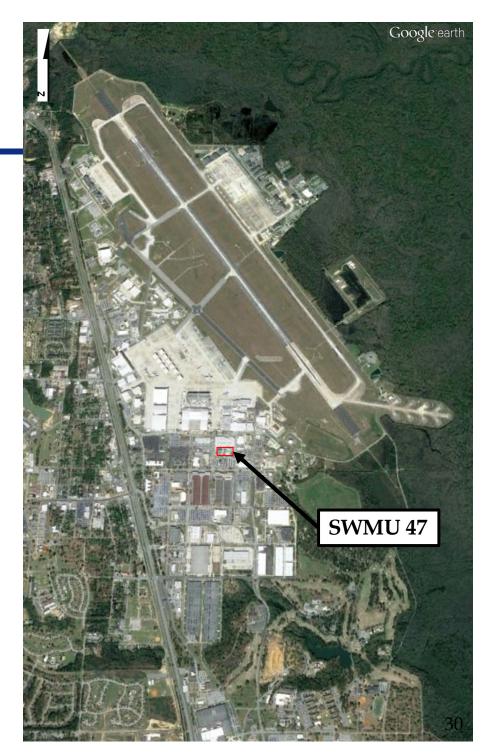
Aggregate trends

*Data from 17 wells used to assess remediation progress

- Continue semiannual groundwater sampling
- Continue to evaluate permanganate persistence following second injection event
- Not likely to achieve RLs by end of current contract
 - Remedy optimization during next contract

Environmental Advisory Board

SWMU 47 (CG504) Update on Progress


Mike Perlmutter, P.E. Technical Lead Jacobs

February 13, 2020

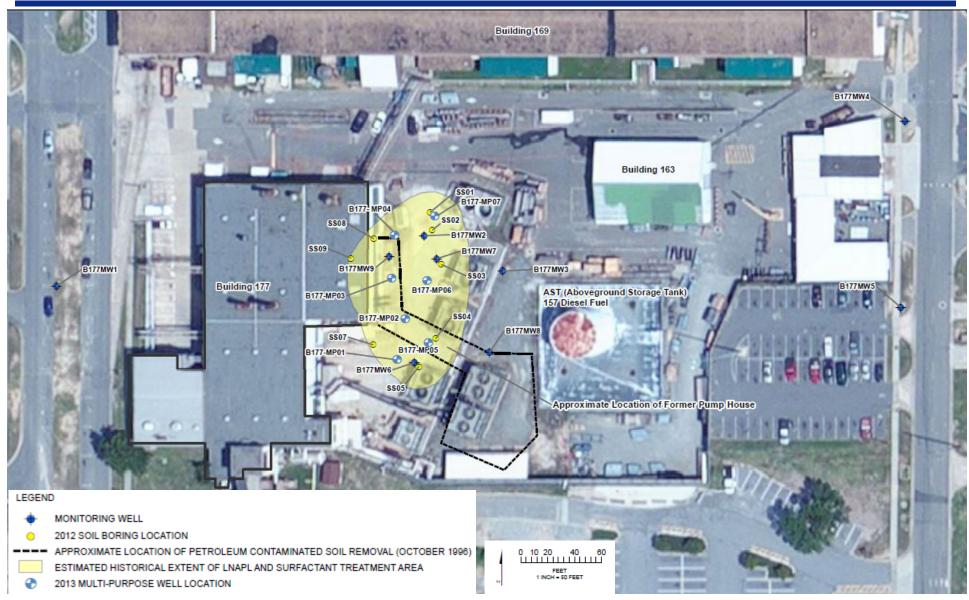
Overview

- Background
- Site layout
- Remediation progress
- Light non-aqueous phase liquid (LNAPL) assessment
- Current Optimized Exit Strategy (OES)
- Groundwater status
- Engineering evaluation
- Path forward

Background

- SWMU 47 is located east of Building 177 in vicinity of 250,000gallon aboveground storage tank (AST) that contains No. 2 diesel fuel
- Building 177 is a steam plant that supports Greater Base Industrial Area (GBIA) and other areas

- AST is connected to Base's tank farm, approximately 1,000 feet east, by an underground pipeline
- In 1996, petroleum-contaminated soil was encountered by contractors during upgrades made to AST containment dike and fuel lines
- Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) completed in 1997


Background

2003 Corrective Action Plan (CAP)

- LNAPL recovery using dual-phase extraction
- Biosparging
- 2012 CAP Addendum
 - Continued LNAPL recovery
 - Surfactant flushing using biodegradable surfactant that will promote mobilization, solubilization, and recovery of LNAPL
 - Excavation of arsenic-impacted soil
 - Sample soil to assess extent of hexavalent chromium
- Current contract objective: OES

Site Layout

- <u>Fall 2013</u>: Surfactant flushing using biodegradable surfactant and recovery of LNAPL
- <u>November 2013</u>: Excavation of 45 cubic yards of arsenicimpacted soil
- Early 2014 to June 2017: Installed and operated groundwater extraction and treatment system to remove LNAPL and dissolved-phase contamination

Remediation Trailer (\uparrow) and LNAPL Collection Tank (\downarrow)

Remediation quantities

- More than 12 million gallons of groundwater extracted, treated, and discharged to Base wastewater treatment plant through June 2017
 - Equal to approximately 30 to 40 pore volumes
- Nearly 625 gallons of LNAPL recovered
 - 175 from the surfactant flushing event in Fall 2013
 - 450 from groundwater extraction and treatment or manual recovery

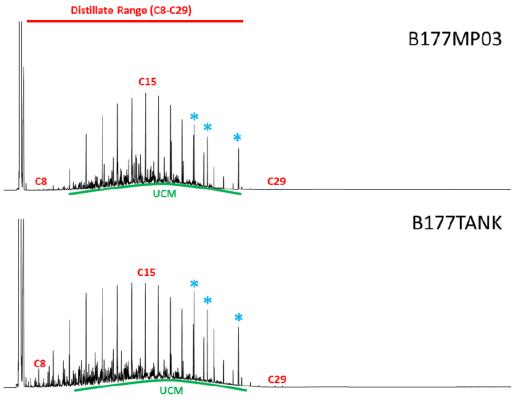
- Supplemental Site Investigation (SSI)
 - Objectives were to: (1) fully delineate LNAPL; and (2) assess whether LNAPL is migrating from underneath Building 177
- Well installation activities conducted between September 14 and December 21, 2017
 - Soil screening with Sudan IV dye to assist with well placement
- Weekly LNAPL gauging through January 2018

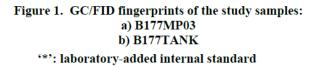
Positive result

LNAPL Assessment

- During SSI, LNAPL was detected at:
 - One monitoring well inside Building 177 (B177MW13)
 - Three monitoring wells outside Building 177 (B177MW9, B177MW14, and B177MW16)
 - Three multipurpose wells outside Building 177 (B177-MP02, B177-MP03, and B177-MP04)
- The maximum LNAPL thickness:
 - Inside Building 177 0.63 foot (B177MW13)
 - Outside Building 177 0.94 foot (B177-MP02)
 - In 2013 7+ feet (B177-MP03)

- LNAPL samples were collected from B177-MP03, B177MW13, and B177MW14 on February 7, 2018
- Shipped to Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania for fuel typing
- Findings
 - All three samples were most similar to the reference standard for diesel fuel
 - LNAPL did not appear to be weathered


- A second LNAPL sample was collected from B177-MP03 on March 26, 2018 to confirm that the LNAPL is not the result of an ongoing leak from the AST, which contains diesel fuel
 - A sample was also collected from the AST for comparison
 - Collected in unpreserved 40-milliliter glass vials and shipped to NewFields in Rockland, Massachusetts for chemical fingerprinting and sulfur analysis



LNAPL Assessment

Findings

- Both samples were relatively unweathered diesel fuel (Figure 1)
- However, sulfur content for LNAPL is consistent with high sulfur diesel fuel while sample from AST is consistent with an ultra-low sulfur diesel fuel (Figure 2)
- Therefore, LNAPL in site monitoring wells at SWMU 47 is not resulting from an ongoing leak from AST

LNAPL Assessment

- Findings
 - Both samples were relatively unweathered diesel fuel (Figure 1)
 - However, sulfur content for LNAPL is consistent with high sulfur diesel fuel while sample from AST is consistent with an ultra-low sulfur diesel fuel (Figure 2)
 - Therefore, LNAPL in site monitoring wells at SWMU 47 is not resulting from an ongoing leak from AST

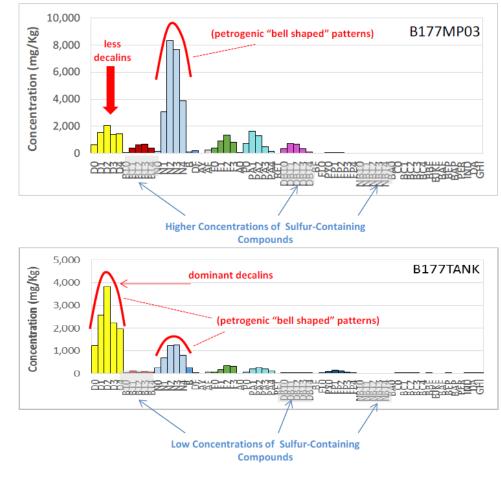


Figure 2. Compositional Analysis of Field Samples (PAH histograms) a) B177MP03 b) B177TANK

Current OES

• OES plan approved by the Air Force in August 2019

Performance objectives

- High vacuum extraction (HVE)
 - Four quarterly HVE events (3Q19, 4Q19, 1Q20, and 2Q20) at the monitoring and multi-purpose wells with measurable LNAPL
 - Each HVE event will be tailored to site based on most recent gauging data; however, events are expected to consist of 8 hours of extraction at up to 5 wells

LNAPL monitoring

- Site monitoring and multi-purpose wells gauged with an oil-water interface probe monthly between July 2019 and June 2020
- If detected, LNAPL is removed with a peristaltic pump, bailer, or absorbent sock

Current OES

HVE results

- On August 30, removed 16 equivalent gallons of hydrocarbons from MW9, MW16, and MP-03
- On November 12, removed 27 equivalent gallons of hydrocarbons from MW9, MW16, and MP-03
- LNAPL thickness observations
 - As of December 2019, LNAPL detected in 6 exterior wells (up to 0.68 feet) and one well inside Building 645 (0.61 feet)

Groundwater Status

	RL	Above	Number of Wells with	Maximum Value (µg/L)	Maximum Value (µg/L)
COC	(µg/L)	RL?	RL Exceedance	1Q2019	2013*
1,2,4-Trimethylbenzene	4.2	Yes	2 of 8	34	134
1,3,5-Trimethylbenzene	156	No	0 of 8	9	43
1-Methylnaphthalene	2.94	Yes	2 of 8	88	720
2-Methylnaphthalene	62.6	Yes	1 of 8	72	936
Arsenic	10	Yes	1 of 8	26.8	27.1
Benzene	5	No	0 of 8	2	3
Benzo(a)anthracene	1	No	0 of 8	0.05	0.08
Dibenzo(a,h)anthracene	1	No	0 of 8	BDL	0.047
Naphthalene	0.19	Yes	2 of 8	20	186

Notes:

COC = contaminant of concern

LNAPL = light non-aqueous phase liquid

 $\mu g/L$ = microgram(s) per liter

RL = remediation level

BDL = below detection limit

* Before implementation of the updated remedy

Highest dissolvedphase concentrations are co-located with residual LNAPL

- Develop, screen, and evaluate remedial alternatives to accelerate removal of LNAPL and reduce concentrations of dissolved phase hydrocarbons to below RLs
- Prepared to support Air Force beyond current contract
- Submitted and approved by Air Force in December 2019

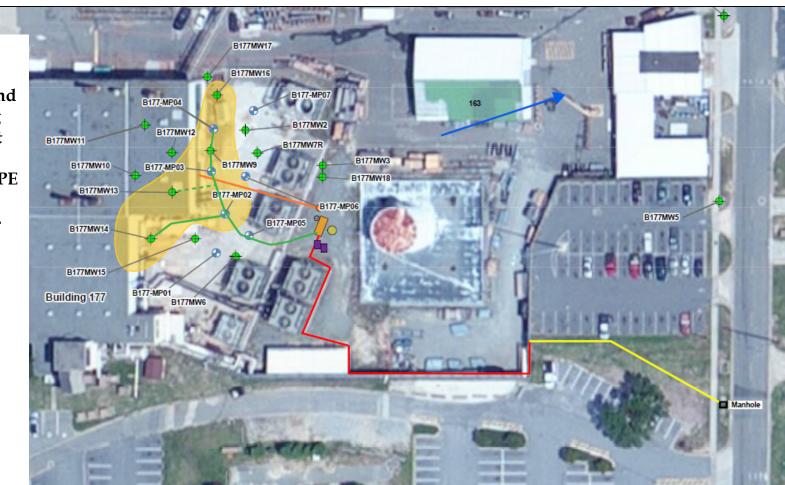
Considered Technologies

- Natural Attenuation
 - Monitored natural attenuation (MNA)
- Removal
 - Air sparging (AS)/Soil vapor extraction (SVE)
 - Excavation and disposal
 - Groundwater extraction and treatment
 - HVE
 - Multi-phase extraction (MPE)
- In Situ Treatment
 - Enhanced aerobic bioremediation
 - ISCO
 - In situ thermal treatment (ISTT)
 - Surfactant flushing

Retained Technologies

- Natural Attenuation
 - MNA
- Removal
 - AS/SVE
 - Groundwater extraction and treatment
 - HVE
 - MPE
- In Situ Treatment
 - Enhanced aerobic bioremediation
 - Surfactant flushing

- The retained alternatives were assembled into three remedial alternatives:
 - Alternative 1: Groundwater extraction with surfactant flushing and MPE
 - Alternative 2: AS/SVE
 - Alternative 3: HVE and enhanced aerobic bioremediation



Alternative 1

- Use existing infrastructure and new monitoring wells to conduct surfactant flushing and MPE
- Six surfactant events over four years
- Remediation timeframe estimated at 5 years
- Total cost = \$1,250,000

LEGEND

0

- MONITORING WELL REMEDIATION SYSTEM TRAILER VAPOR-PHASE CARBON FILTRATION VESSELS MULTIPURPOSE WELL LNAPL HOLDING TANK APPROXIMATE EXTENT OF LNAPL PLUME SURFACTANT AND NUTRIENT MIXING TANK APPROXIMATE DIRECTION OF GROUNDWATER FLOW
- ELECTRICAL POLE AND OVERHEAD WIRES ABOVEGROUND CONVEYANCE PIPE BELOWGROUND CONVEYANCE PIPE MANHOLE CONNECTED TO INDUSTRIAL
- WASTEWATER SEWER SYSTEM SVE, LIQUIDS EXTRACTION/INJECTION,
- AND COMPRESSED AIR HOSES

- NOTES
- 1. LNAPL = LIGHT NON-AQUEOUS PHASE LIQUID
- 2. LNAPL = DATA PRESENTED ON THE FIGURE WAS COLLECTED
- ON JANUARY 29, 2018
- 3. SVE = SOIL VAPOR EXTRACTION 4. SWMU = SOLID WASTE MANAGEMENT UNIT

SOURCE: BING IMAGERY


0 10 20 40 60 FEET 1 INCH - 50 FEET 50

Alternative 2

- Install AS/SVE system to reduce LNAPL and volatile organic compound (VOC) concentrations
- Angled AS and SVE wells would be used to access underneath the building
- New remediation equipment
- Remediation timeframe estimated at 2 years
- Total cost = \$1,000,000

LEGEND

MONITORING WELL
AS/SVE SYSTEM COMPOUND
VAPOR-PHASE CARBON FILTRATION VESSELS
APPROXIMATE EXTENT
OF LNAPL PLUME
APPROXIMATE DIRECTION
OF GROUNDWATER FLOW
SVE WELL

~	ELECTRICAL POLE AND OVERHEAD WIRES
-	ABOVEGROUND CONVEYANCE PIPE
-	BELOWGROUND CONVEYANCE PIPE
	MANHOLE CONNECTED TO INDUSTRIAL WASTEWATER SEWER SYSTEM
	ANGLED WELL CASING

- NOTES: 1. AS=AIR SPARGE
- LNAPL = LIGHT NON-AQUEOUS PHASE LIQUID
- 3. LNAPL = DATA PRESENTED ON THE FIGURE WAS COLLECTED
- ON JANUARY 29, 2018 4. SVE = SOIL VAPOR EXTRACTION
- A. SVE = SULL VAPOR EXTRACTION SUBJUE SOULD WASTE MANAGEMENT INFO CONTRACTION
- 5. SWMU = SOLID WASTE MANAGEMENT UNIT

SOURCE: BING IMAGERY

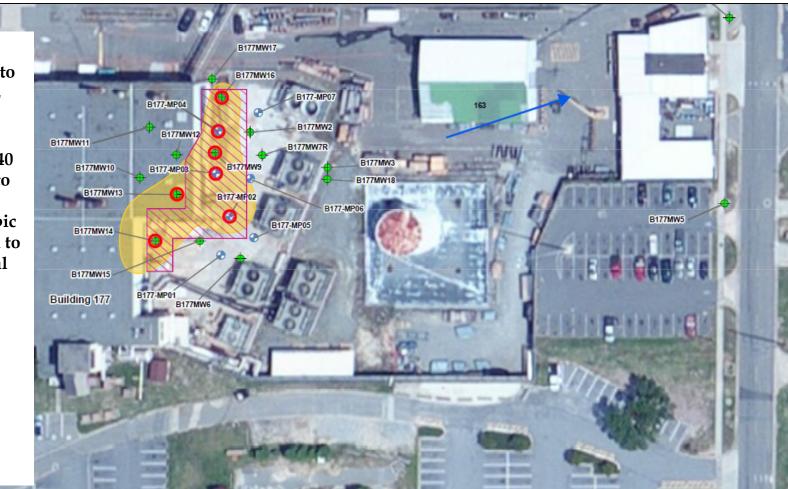
0 10 20 40 60

Alternative 3

- Continue HVE to remove LNAPL
- Inject oxygen releasing compound via 40 DPT locations to facilitate enhanced aerobic bioremediation to address residual groundwater impacts
- Remediation timeframe estimated at 8 years
- Total cost = \$900,000

MONITORING WELL

OF LNAPL PLUME


MULTIPURPOSE WELL

APPROXIMATE EXTENT

APPROXIMATE DIRECTION

OF GROUNDWATER FLOW

EGEND

OXIDANT INJECTION AREA

AS/SVE SYSTEM COMPOUND

COMPOUND INJECTION AREA

COMPRESSED AIR/SOIL VAPOR

OXYGEN-REDUCING

CONVEYANCE LINES

WELL TARGETED FOR HVE

O

NOTES:

- 1. HVE = HIGH VACUUM EXTRACTION
- 2. LNAPL = LIGHT NON-AQUEOUS PHASE LIQUID 3. LNAPL = DATA PRESENTED ON THE FIGURE WAS COLLECTED
- DNAPL = DRIA PRESENTED ON THE FIGURE WAS COLLECTI ON JANUARY 29, 2018
- 4. SWMU = SOLID WASTE MANAGEMENT UNIT

SOURCE: BING IMAGERY

0 10 20 40 60

FEET

- Alternative 1
 - Expected to achieve corrective action objectives (CAOs) within 5 years
 - Easiest to implement because infrastructure is currently in place
 - Most expensive alternative because it would require regular operations and maintenance (O&M) for 5 years

Alternative 2

- Expected to be most effective option, achieving CAOs in approximately 2 years.
- Only slightly more expensive than Alternative 3 because of limited O&M requirements
- Most challenging to implement due to installation of new AS and SVE wells, conveyance lines, and other associated infrastructure

Alternative 3

- Most flexible and least expensive alternative
- Expected to take approximately 8 years to achieve CAOs

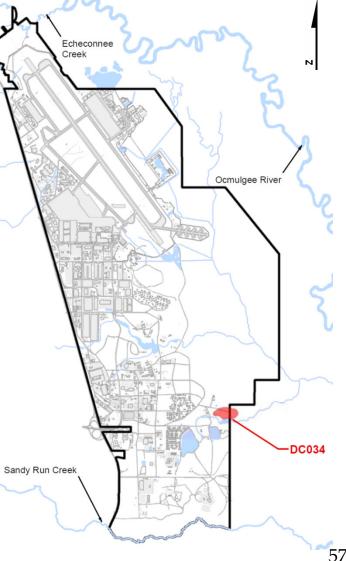
- Complete third and fourth HVE events
 - Tentatively scheduled for February and May 2020
- Continue monthly LNAPL gauging and longterm groundwater monitoring
- Support transition to next contract

Environmental Advisory Board

SWMU 36 (DC034) Update on Progress

Adam Forsberg Hydrogeologist Jacobs

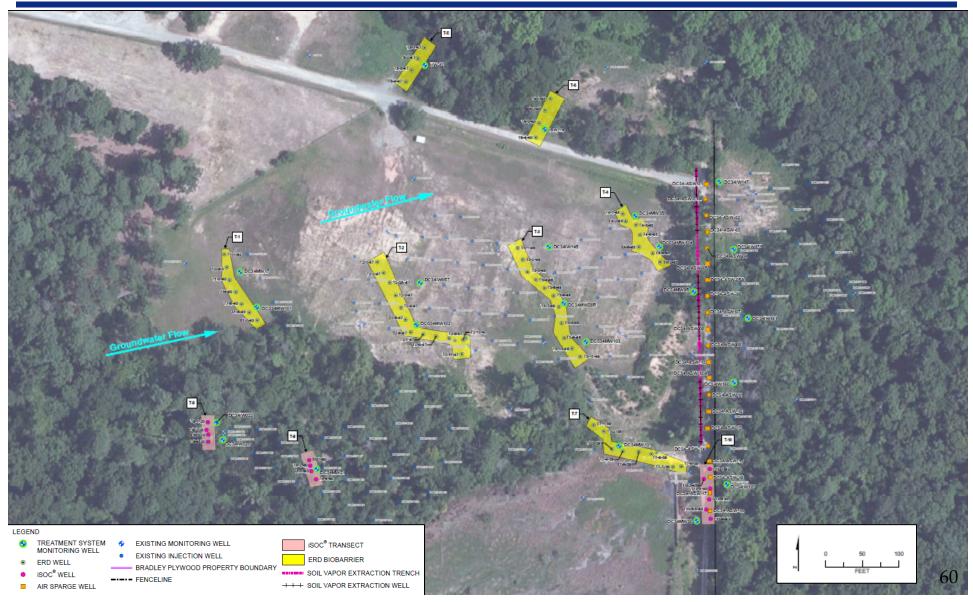
February 13, 2020


Overview

- Background
- Site layout
- Conceptual site model (CSM) overview
- DC034 CSM refinement
- DC034 3-dimensional (3-D) model development

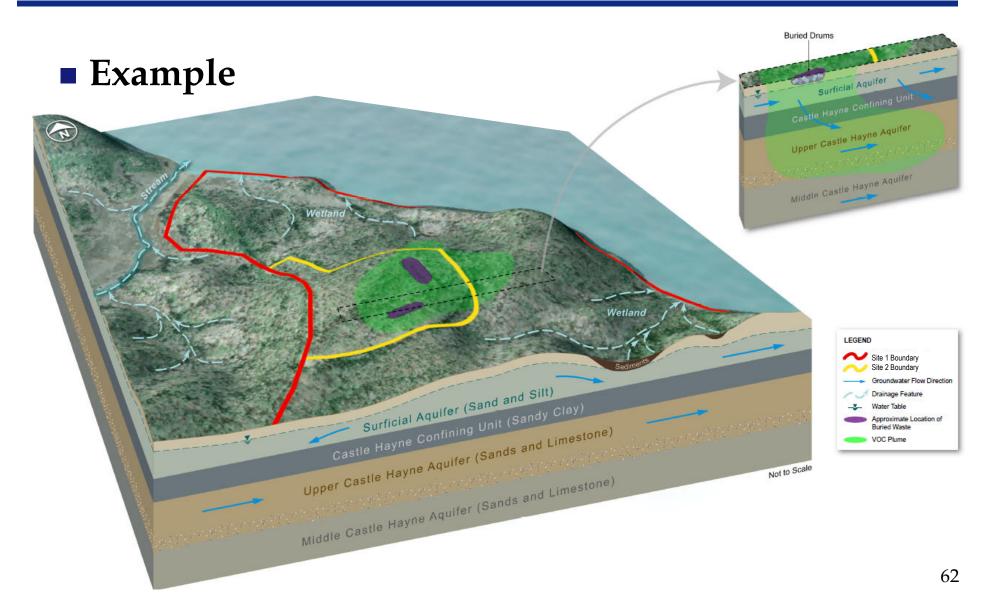
Background

- Horse Pasture Trench Disposal Site
 - Used for disposal of wastes in pits and trenches from mid 1950s to mid 1970s
- Nearly 64,000 tons of impacted soil excavated and disposed offsite in November 2004
- ISCO used to remediate chlorinated ethenes, chlorobenzene, and dichlorobenzene in groundwater


- Revised CAP prepared in 2013 to address remaining groundwater impacts
 - Enhanced Reductive Dechlorination (ERD)
 - Aerobic bioremediation using in situ submerged oxygen curtain (iSOC)
 - AS/SVE cut-off barrier
- Corrective Action Objectives:
 - Reduce COCs in groundwater to below RLs
 - Limit further off-site migration of groundwater COCs

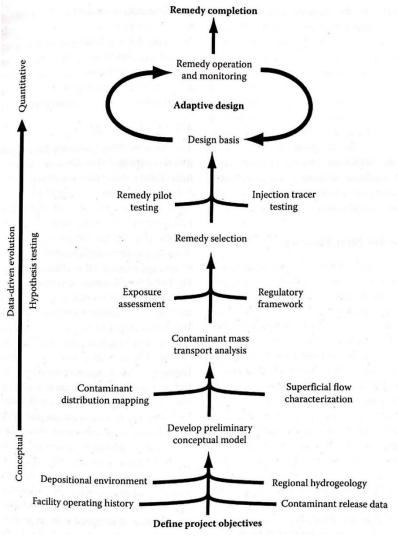
- Contract objectives to be achieved by September 2020
- Implement an OES with performance metrics
 - ERD Reduction of trichloroethene (TCE) concentrations in seven (7) performance monitoring wells as compared to April 2009 results
 - ERD Reduction of total VOC concentrations in 13 ERD performance monitoring wells as compared to April 2015 results
 - iSOC Reduction of chlorobenzene concentrations in three (3) performance monitoring wells as compared to April 2009 results
 - AS/SVE Reduction of total VOC in three (3) performance monitoring wells as compared to December 2013 results

Site Layout

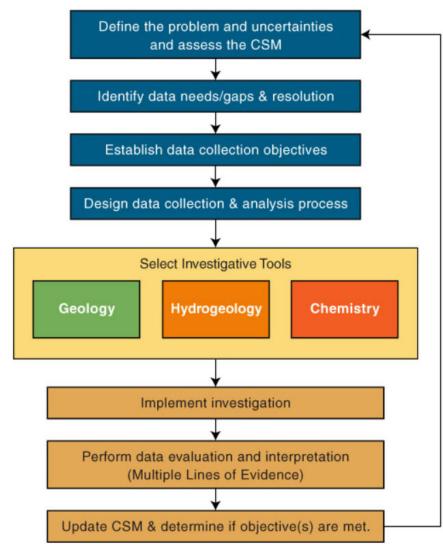


- To support transition to next contract, we were tasked with revisiting DC034 CSM to provide a foundation for remediation optimization
- A CSM describes the processes that control transport of contaminants through physical media to environmental receptors (Interstate Technology & Regulatory Council [ITRC], 2017)
 - When and how did contaminants enter the subsurface?
 - Site history and operations
 - What are the contaminants?
 - Contaminant class and behavior
 - Where are contaminants in the aquifer today and where will they travel?
 - Geology and hydrogeology

CSM Overview



CSM Overview


• How a CSM is used?

- Decision-making
- Data interpretation
- Communication
- Data gaps
- A CSM is iterative and dynamic
 - Updated throughout a project lifecycle

CSM Overview

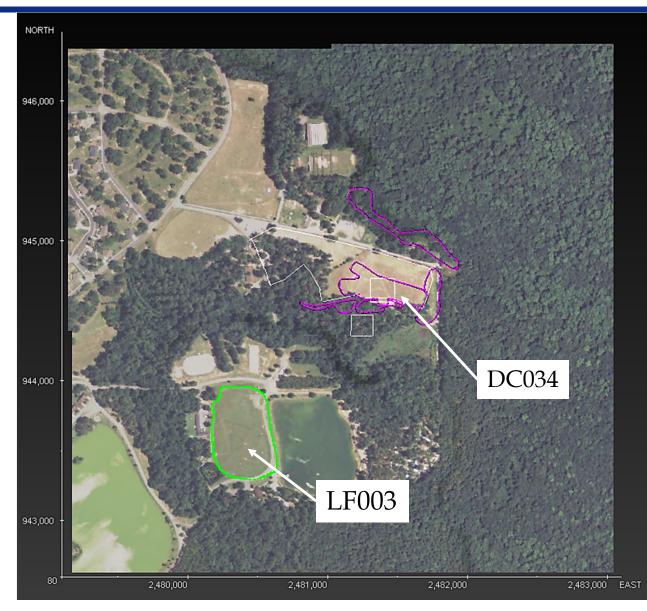
CSM Refinement

- Long-term planning
- Remedy implementation
- Data evaluation
 - Monitoring and Performance
- Optimization
 - Data gaps

DC034 CSM Refinement

Objective

- Identify data gaps and reduce uncertainty in the DC034 CSM
 - Hydrogeologic unit extent
 - Contaminant sources and extents
 - Migration pathways


Methodology

 Construct a digital CSM by compiling historical lithologic and analytical data from DC034 and LF003 into 3-D geostatistical visualization model

– Earth Volumetric Studio (EVS) by C Tech Corporation

DC034 3-D Model Development Digital CSM Layout

DC034 3-D Model Development Earth Volumetric Studio

- Uses geostatistical methods to produce 2-dimensional and 3-D spatial models from measured geospatial input data
- Complete EVS documentation can be found at C Tech Corporation help website

https://www.ctech.com/studio_help/Default.htm.

DC034 3-D Model Development Earth Volumetric Studio

 EVS geostatistical methods

- Variography
 - Process of characterizing and modeling spatial continuity (variation) in a data set
- Gridding (interpolation)
 - Process of generating a grid of predicted data from a measured data set using two-dimensional (spatial) interpolation methods

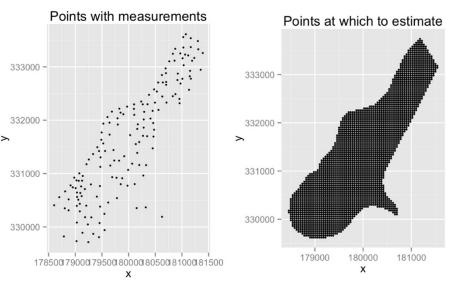


Photo credit: https://rpubs.com/nabilabd/118172

DC034 3-D Model Development Data Sources

- Robins Air Force Base Environmental Resources Program Info Management System (ERPIMS) database
 - Well/boring coordinates
 - Well construction details
 - Sample depths/intervals
 - Groundwater analytical data
 - Groundwater levels
- Historical Reports
 - Soil boring descriptions and Unified Soil Classification System group symbols
 - Boundary conditions (such as confining layers, faults, and remedial structures)
- Open-source spatial data
 - Topography
 - United States Geological Survey National Elevation Dataset 1/3 arc-second ArcGrid 2018
 - Aerial imagery
 - United States Department of Agriculture National Agriculture Imagery Program Imagery 2016

DC034 3-D Model Development Model Components

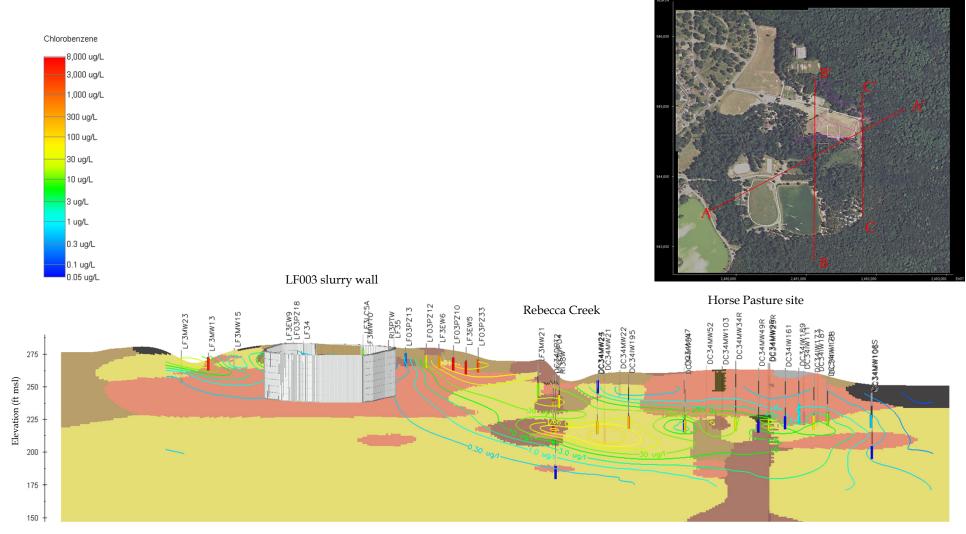
- Lithology dataset
 - Digitized historical soil boring logs
 - Total of 208 well/boring locations

Title	Author(s)	Date
RCRA Facility Investigation Report,	CH2M HILL	May-91
Zone 3 USAF		5
Draft Final Corrective Action Plan	Geophex	Dec-95
Landfill No. 3	-	
[Phase I] RCRA Facility	Geophex	Jun-00
Investigation Report for the Horse		
Pasture Site (ERP Site DC034, Project		
No. UHHZ96-7039) at Robins Air		
Force Base		
Revised Draft Final Phase II Report	GeoSyntec	Oct-03
Horse Pasture Site	Consultants	
Hydraulic Containment Evaluation	GeoSyntec	Jan-06
Report for Landfill No. 3 (LF003)	Consultants	
Additional Site Investigations at	GeoSyntec	Dec-06
LF003 and Luna Lake	Consultants	
Draft Final Corrective Action Plan	BEM System and	Apr-07
Annual Progress Report for SWMU	Tetra Tech	
36 Groundwater		
Construction Completion Report	CAPE	Mar-14
and OM&M Plan for DC034 – Horse	Environmental and	
Pasture Trench Disposal Site	CH2M HILL	
(SWMU 36)		

ERP – Environmental Restoration Program

OM&M – Operations, Maintenance, and Monitoring

DC034 3-D Model Development Model Components


Analytical dataset

- March 2019 monitoring data
 - Supplemental Fall 2018 and 2017 DPT grab sample data
 - Select historical analytical data used as control points to reflect site knowledge
- Total of 171 well/boring sample locations
- Plume limits set for RLs

		Remedial Level
Analyte	Sample Size	μg/L
Chlorobenzene	159	100
Trichloroethene	168	5
Benzene	168	5
1,2-DCA	160	5
1,3-DCB	160	9.5
1,4-DCB	154	75
cis-1,2-DCE	162	70
VC	168	2

DC034 3-D Model Development EVS Model

DC034 3-D Model Development EVS Model

(interactive EVS model viewer)

References

- ITRC. 2015. Integrated DNAPL Site Characterization and Tools Selection. Washington, D.C.: Interstate Technology & Regulatory Council, Remediation Management of Complex Sites Team.
- ITRC. 2017. Remediation Management of Complex Sites. RMCS-1. Washington, D.C.: Interstate Technology & Regulatory Council, Remediation Management of Complex Sites Team. <u>https://rmcs-1.itrcweb.org</u>.
- Suthersan S.S., J. Horst, M. Schnobrich, N. Welty, J. McDonough. 2016. Remediation Engineering: Design Concepts, Second Edition. CRC Press. ISBN 9781498773270 -CAT# K29550.

Environmental Advisory Board

Administrative Record Overview

Laurel Cordell Environmental Engineer/EAB Manager AFCEC/CZOE

February 13, 2020

Overview

- Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Requirement
- Previous Location
 - Nola Brantley
- Current Online Location
 - http://afcec.publicadmin-record.us.af.mil/
- Website Overview

New Business and Program Closing

Laurel Cordell EAB Manager

Next EAB Meeting

Thursday, May 7, 2020

