Welcome

Environmental Advisory Board Meeting

Robins Air Force Base February 7, 2019

1

Welcome and Program Introduction

Dr. Linda Smyth EAB Community Co-chair

- AFB Air Force Base
- AS Air Sparging
- CAP Corrective Action Plan
- CAPE Cape Environmental Management Inc
- CB Chlorobenzene
- COC Contaminant of Concern
- D Diluted
- **EFR[®] Enhanced Fluid Recovery**
- GA EPD Georgia Environmental Protection Division
- GWE Groundwater Extraction

- iSOC In Situ Oxygen Curtain
- IW Injection Well
- JP Jet Propellant
- LNAPL Light Non-Aqueous Phase Liquid
- M Estimated Concentration
- MNA Monitored Natural Attenuation
- µg/L microgram(s) per liter
- ND Non-detect
- PBR Performance-Based Remediation
- RL Remedial Level

- **SC Site Closure**
- SEAR Surfactant Enhanced Aquifer Remediation
- SVE Soil Vapor Extraction
- SVOC Semi-Volatile Organic Compound
- SWMU Solid Waste Management Unit
- TCE Trichloroethene
- **TMB –** Trimethylbenzene
- VOC Volatile Organic Compound

Environmental Advisory Board

Update on Progress at Select Restoration Sites

Meg Greenwald, P.E.

CAPE

February 7, 2019

- Solid Waste Management Unit (SWMU) 20 (OT020)
- **SWMU 61**
- SWMU 28 (CG028)

Environmental Advisory Board

SWMU 20 (OT020) Update on Progress

Meg Greenwald Principal Engineer CAPE

February 7, 2019

Overview

- Background
- Effectiveness of Pre-Performance-Based Remediation (PBR) Remedy
- Optimized remedy
- Expanded air sparging (AS)/soil vapor extraction (SVE) system and effectiveness
- Source area reductions: 2013, 2014, and 2018
- System performance to date
- Path forward

Background

- Groundwater contamination discovered in 1980s
- Consists primarily of chlorinated volatile organic compounds (VOCs), including:
 - Tetrachloroethene
 - Trichloroethene (TCE)
 - Dicholoroethene
 - Vinyl chloride
 - Chlorobenzene (CB)
 - Dichlorobenzenes

Background

- Multiple soil SWMUs contribute to groundwater plume (SWMUs 37, 38, 39 & 40)
- Groundwater contamination extends to maximum depth of approximately 100 feet below ground surface
- Original Corrective Action Plan (CAP) approved in 2002

11

Effectiveness of Pre-PBR Remedy

- AS/SVE curtain installed just downgradient of the source area
- Groundwater extraction (GWE) wells operating in downgradient portion of plume
- Network of approximately 60 monitoring wells

Pre-PBR Corrective Action System

Effectiveness of Pre-PBR Remedy

- AS/SVE curtain cut off contaminant migration from the source area
- GWE system decreased extent of downgradient the plume
- Natural attenuation limited migration at the edges of the plume, and aided in contaminant reduction in less concentrated portions of the plume

Optimized Remedy

- March 2012 Conducted source area investigation to delineate highest concentrations
- October 2013 –
 Shut off GWE wells
- March 2014 Began operation of horizontal and vertical AS/SVE wells to target more of source area

Delineation of TCE source area

Expanded AS/SVE System and Effectiveness

Expanded AS/SVE System and Effectiveness

Expanded AS/SVE System and Effectiveness

Source Area Reductions: 2013, 2014, and 2018

System Performance to Date

Geometric Mean of TCE in OT020 Performance Wells

 \rightarrow TCE \rightarrow TCE Performance Metric

- System Operation (2013 2019)
- Monitored Natural Attenuation (2020 2027)
- Confirmation Sampling (2027 2030)
- Site Closeout (2030)

Environmental Advisory Board

SWMU 61 Update on Progress

Meg Greenwald Principal Engineer CAPE

February 7, 2019

Overview

- Background
- Site layout
- Remedial action progress
- Path forward

Background

- Jet Propellant (JP) fuel release from leaking valve on the JP Fuel No. 8 supply line
- Contaminants include:
 - VOCs
 - Benzene
 - 1,3,5-Trimethylbenzene (TMB)
 - Ethylbenzene
 - One Semi-volatile Organic Compound (SVOC)
 - Naphthalene
- Georgia Environmental Protection Division (GA EPD) approved the CAP in 2002
 - AS and SVE
 - Monitored natural attenuation (MNA)

Site Layout

- Operated AS/SVE system from 2003 through 2009
 - Contaminant concentrations reduced to near Remedial Levels (RLs)
 - January 2009 Ceased system operation and initiated MNA
 - By permit Three year monitoring period required for site closure to assess rebound
- Closure monitoring sampling events
 - April 2009 Annual sampling initiated
 - June 2011 GA EPD approved monitoring in only S61W4

Remedial Action Progress

Annual monitoring results 2008 through 2013 at S61W4

Remedial Level	Date Sampled	4/23/2008	4/29/2009	4/29/2010	4/28/2011	4/16/2012	4/10/2013
μg/L	COCs	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
5	Benzene	6.44	6.41	6.35J	3.76J	5.6	5.7
700	Ethylbenzene	1.99J	4.96J	22.6J	10.7J	16.7	8.6
12	1.3.5-Trimethylbenzene	1.53J	5U	2.2J	4.22J	5.2	15.8
6.5	Naphthalene	0.581U	0.505U	0.515U	3.59	0.086U	0.052U

Notes:

Remedial levels taken from Table 4-1, State-approved Draft Corrective Action Plan for SWMUs 57 and 61 dated June 2002.

µg/L = micrograms per liter

COC = Contaminant of Concern

Results in **BOLD** indicate detections

Highlighted results indicate a detection exceeding its respective remedial level

U = Result not detected. Numerical value preceding the "U" qualifier is the reporting limit.

J = Analyte is detected. The reported result is an estimated value.

- Benzene remained near the RL: concentrations fluctuating both above and below RL
- **TMB detected above RL in April 2013**
 - Prompted initial concern from GA EPD
- Ethylbenzene and naphthalene remained below RL through April 2013

- Reviewed recalcitrant benzene and TMB detection with GA EPD in October 2013
 - Began quarterly monitoring
 - Collaborated on idea to perform polishing using In-Situ Oxygen Curtain (iSOC[™]) and an oxygen releasing compound injection called TersOX[™]
 - Implemented iSOCTM December 2013
 - Installed TersOX[™] January 2014

Remedial Action Progress

iSOCTM and TersOXTM Injection Locations

29

Monitoring results October 2013 through October 2014 at S61W4

	Began iSOC TM	☐ Began TersOX™					
				/			
Remedial Level	Date Sampled	10/1/2013	1/2/2014	3/20/2014	4/12/2014	7/14/2014	10/22/2014
μg/L	COCs	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L
5	Benzene	5.60	4.6	0.34U	5.5	5.4	4.4
700	Ethylbenzene	69.7	48.6	0.4J	65.3J	65	100
12	1.3.5-Trimethylbenzene	13.4	3.2	1.1	10.0	11.0	6.6
6.5	Naphthalene	15.6	2.0	4.6J	7.6J	15.1	27.1

Notes:

Remedial levels taken from Table 4-1, State-approved Draft Corrective Action Plan for SWMUs 57 and 61 dated June 2002.

 $\mu g/L$ = micrograms per liter

Results in **BOLD** indicate detections

Highlighted results indicate a detection exceeding its respective remedial level

U = Result not detected. Numerical value preceding the "U" qualifier is the reporting limit.

J = Analyte is detected. The reported result is an estimated value.

Remedial Action Progress

Since transitioning back to MNA, COC concentrations at S61W4 have remained fairly consistent

Resume MNA —

v									
Remedial Level	Date Sampled	10/22/2014	4/22/2015	3/22/2016	11/10/2016	3/9/2017	3/23/2018	8/1/2018	
μg/L	COCs	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	
5	Benzene	4.4	4.8	5 M	4.1	5	4	5	
700	Ethylbenzene	100 D	67.8 M	42	NA	48 M	53	52	
12	1.3.5-Trimethylbenzene	6.6	6	3 J	2.3	2 U	2 U	2 U	
6.5	Naphthalene	27.1	14.6 DM	15	23 J	18 J	14	18	

Notes:

Remedial levels taken from Table 4-1, State-approved Draft Corrective Action Plan for SWMUs 57 and 61 dated June 2002.

 μ g/L = micrograms per liter

Results in **BOLD** indicate detections

Highlighted results indicate a detection exceeding its respective remedial level

U = Result not detected. Numerical value preceding the "U" qualifier is the reporting limit.

J = Analyte is detected. The reported result is an estimated value.

D = The result is from a diluted analysis

M = Detected, a matrix effect was present. Results should be considered estimated.

NA = Not Analyzed

- In April 2018, CAPE proposed to conduct dilute hydrogen peroxide and potable water injections to stimulate biological processes
- Dilute hydrogen peroxide injections were conducted in June and August 2018 using existing injection wells (IWs) (IW-1 through IW-5)

- Field measurements for dissolved oxygen indicated increases in oxygen concentrations
- August 2018 data indicated that naphthalene concentrations have not yet been impacted by hydrogen peroxide injections
- CAPE installed new oxygen diffusers to replace iSOCsTM and started them in December 2018
- Oxygen diffusers will allow oxygen to continually diffuse into groundwater for approximately three months prior to annual sampling in March 2019

- Operate oxygen diffusers to address naphthalene concentrations
- Once contamination is below RLs, re-initiate closure monitoring
- After three years of successful closure monitoring, request SC

Environmental Advisory Board

SWMU 28 (CG-028) Update on Progress

Meg Greenwald Principal Engineer CAPE

February 7, 2019

Overview

- Background
- Contract goals and remedy
- Enhanced Fluid Recovery (EFR[®]) and SURFAC[®] effectiveness
- Revised approach
- Full scale results
- Light Non-Aqueous Phase Liquid (LNAPL) rebound monitoring
- Potable water flush/groundwater extraction

Overview

- Surfactant Enhanced Aquifer Remediation (SEAR) progress
- Post-flush LNAPL rebound monitoring
- Passive Skimmer Pump / Absorbent Sock Performance
- Groundwater concentrations
- Path forward

Background

- Site of fuel release from purge fluid tanks; purge fluid is used to empty aircraft fuel tanks prior to maintenance
- Contamination consists of free product and dissolved petroleum hydrocarbons in groundwater

Background

- Shallow, sandy aquifer with high dissolved oxygen concentrations results in high natural attenuation rates at edges of dissolved hydrocarbon plume
- Depth to groundwater = 15 feet
- Pre-PBR remedy: Product recovery conducted 1999 to 2012

- Contract Goals:
 - Achieve 100 percent removal of free product in all wells
 - Achieve groundwater RL by 2020
- PBR remedy to achieve contract goals: EFR[®] and surfactant flushing
- EFR® and surfactant flushing conducted August 2012 – February 2015; LNAPL thicknesses rebounded in October 2015
- Revised PBR Remedy: SEAR

EFR[®] and SURFAC[®] Effectiveness

Prior to EFR[®] (2012)

After Event #3 (2013)

EFR[®] and SURFAC[®] Effectiveness

2015 Rebound

June 2016 Product Thickness

- Change surfactant formula and delivery method to contact and remove more free product
- Non-emulsifying surfactant allows free product to be removed from waste stream, reducing disposal costs
- Continuous "flow through" delivery method achieves better removal of free product than "push-pull" method

Revised Approach

Treatment Areas

- Site-Specific Phase Behavior Study: June 2016
- Hydraulic Model: July 2016
- Installation of Additional Injection/Extraction Wells: September – October 2016
- Pilot Study: December 2016 February 2017
- Pilot Study Evaluation and System Modifications: March – May 2017
- Full Scale: May August 2017

- LNAPL Rebound Monitoring: September October 2017
- Potable Water Flush/Groundwater Extraction: November 2017
- LNAPL Rebound Monitoring/Passive Recovery: December 2017 – Current

- May August 2017
- Injected 1,830,000 gallons of surfactant, polymer, and potable water
- Extracted 1,570,000 gallons of groundwater, surfactant, polymer, and product
- Field measurements of salt (conductivity) used to track surfactant breakthrough in extraction wells
- Full scale completed when design injection quantities were achieved and elevated conductivity measurements were observed in extraction wells

Full Scale Results

SWMU 28 Surfactant Injection / Extraction System Photographs

Photograph Direction: Northeast

Full Scale Results

SWMU 28 Surfactant Injection / Extraction System Photographs

Area 1 Injection Wells

Photograph Direction: North

Full Scale Results

SWMU 28 Surfactant Injection / Extraction System Photographs

Photograph Direction: North

- LNAPL rebound monitoring conducted four weeks after SEAR in September 2017
- LNAPL observed in 22 wells at thicknesses ranging from 0.01 feet to 0.41 feet
- Cumulative (site-wide total) LNAPL thickness from September 2017 was 2.85 feet compared to the pre-SEAR cumulative LNAPL thickness of 11.67 feet
- Cumulative thickness reduced by 76 percent

- LNAPL was observed only in wells used as extraction wells during SEAR; Prior to SEAR, LNAPL was observed in injection wells
- Results suggest that previously trapped LNAPL pockets had been mobilized to extraction points, but additional recovery was needed to complete LNAPL removal

Potable Water Flush / Groundwater Extraction

- Potable water flush/groundwater extraction event conducted November – December 2017
- Injected 327,000 gallons of potable water
- Extracted 354,000 gallons of groundwater, surfactant, and product
- Approximately 2,000 gallons of LNAPL were recovered from SEAR and potable water flush activities

SEAR Progress

SEAR Progress

SEAR Progress

Post-Flush LNAPL Rebound Monitoring

- Results indicated similar LNAPL thicknesses to those observed before the potable water flush
- Therefore, no additional rounds of injections and/or groundwater extraction were recommended
- Using January 2018 gauging data, passive skimmer pumps and absorbent socks were recommended as polishing step

Passive Skimmer Pump / Absorbent Sock Performance

- Passive skimmers and absorbent socks deployed on February 6, 2018
- Since deployment, LNAPL thicknesses have generally been 0.01 feet or less in most wells
- LNAPL recovery in passive skimmers and absorbent socks have been monitored monthly
- As remaining LNAPL diminishes, passive skimmers and absorbent socks are removed from wells

Groundwater Concentrations

SWMU 28 Average Total VOC and SVOC Concentrations in

Groundwater Concentrations

March 2018: Nine of 27 wells have COC concentrations above RLs

- Significant COC concentration decreases (52 94 percent) in groundwater were observed in four wells in which LNAPL was detected in 2016, but no longer present in 2018
- Results suggest that contaminant concentrations in groundwater decrease in wells after LNAPL is no longer detected
- Geochemical data collected in March 2018 indicate natural biodegradation processes are present at SWMU 28

- Conduct monthly free product gauging
- Remove skimmer pumps and absorbent socks when LNAPL is no longer observed in a well
- Achieve 100 percent removal of free product
- Continue groundwater monitoring
- Achieve remedial levels in all wells (2020)

New Business and Program Closing

Dr. Linda Smyth EAB Community Co-chair

Next EAB Meeting

Thursday, 2 May 2019

