Welcome

Environmental Advisory Board Meeting

Robins Air Force Base August 6, 2009

Welcome and Program Introduction

Ms. Becky McCoy EAB Installation Co-chair

ACRONYMS & ABBREVIATIONS

- AFB Air Force Base
- CCTV Closed Circuit Television
- HDPE High Density Polyethylene
- PVC Polyvinyl Chloride
- PE Polyethylene

Environmental Advisory Board

Utilizing Trenchless Technologies for Water Main Upgrades at Robins Air Force Base (AFB)

August 6, 2009

OVERVIEW

- Background
- Trenchless Technologies
- Benefits of Trenchless Technologies
- Overview of Pipe Bursting
- Water Main Upgrade at Robins AFB
- Summary
- Questions/Comments

- Underground Utility Infrastructure
 - Arteries of our cities and communities
 - Industrial and sanitary sewers
 - Drinking water conveyance
 - Storm water conveyance
 - Communication lines

- Most Underground Infrastructure Across the United States is Over 50 Years Old
 - Operating beyond original design life
 - Beginning to see signs of problems
 - Sinkholes
 - Interruption in service from broken lines
 - Overloading treatment plants from storm water and groundwater leaks into broken lines

Sinkhole at Georgia Tech – 32 feet deep Caused by rainwater leaking into broken sewer pipe

Water Distribution Lines

• Problems

- Encrusted
- Corroded

Consequences

- Leaking (losses up to 40%)
- Loss of capacity
- Red/rusty
 water
- Erosion and washouts

Sinkhole from leaking water line

Loss of potable water puts strain on water resources

Wastewater Collection Lines

Problems

- Offset pipes
- Leaking joints
- Root intrusion

Consequences

- Infiltration/Inflow
- Reduced capacity
- System backups
- Spills and overflows
- Erosion and sinkholes

Deteriorated piping allows infiltration overwhelms collection systems and treatment plants

• What are the True Costs of Our Aging Infrastructure?

Environmental impacts

Public safety concerns

Increased long-term construction costs

Challenges to Upgrading our Infrastructure

- High cost to excavate below streets, sidewalks, and buildings
- Disruption to traffic, businesses, and other activities
- Location and condition of utilities commonly unknown or unclear

- One Solution to the Challenges of Upgrading our Underground Infrastructure
 - Trenchless Technologies Provides
 - Methods for installing new utilities or to replace and/or repair existing utilities
 - Long term solutions with design life exceeding 50 years
 - A means to installing pipes from as small as 1-inch up to 110-inches
 - Several alternatives but not a silver bullet

Slip lining utility pipe

Robotic Cutter

Types of Trenchless Technologies

Trenchless Rehabilitation

- Technologies Replace or Repair Existing Utilities
 - Pipe bursting
 - Cured in place pipe
 - Internal joint seals
 - Structural coatings
 - Thermoformed lining
 - Slip lining

Trenchless Construction

- Technologies Provide New Utilities Where None Exist
 - Directional drilling
 - Tunneling
 - Micro tunneling
 - Directional boring
 - Pipe ramming
 - Moling

- Trenchless Applications
 - Pipeline assessment robotic closed circuit television (CCTV)
 - Pipelining cured-in-place pipe provides pipe inside existing pipe

• Pipe bursting – replaces existing pipe with minimal excavation

- Trenchless Applications
 - Manhole rehabilitation epoxy and cement based lining systems seal manholes

• Internal joint seals – installed without excavation, provides water tight seal

• Directional drilling – install conduit and casing without trenching

Trenchless Applications

Common Utility Problems	Trenchless Solutions				
	ССТV	Pipe Bursting	Pipe Lining	Internal Seals	Manhole Rehab
Unknown quantities, location, condition of infrastructure	+				
Inadequate pressure and flows for fire suppression or potable water		+			
Water main breaks		+	+	+	
Infiltration and inflow increasing volume of water to be treated	+	+	+	+	+
Sink holes and pavement settling over underground utilities	+	+	+	+	+
Fluid escaping from industrial / sanitary lines	+	+	+	+	+
Excavating to find and fix problems	+	+	+	+	+
Pipe repairs in sensitive areas e.g. contaminated soil, runways, buildings	+	+	+	+	+
Odor complaints	+	+	+	+	+
Potable water distributed through asbestos pipe		+			

BENEFITS OF TRENCHLESS TECHNOLOGIES

- Typically More Cost Effective Reduces or **Eliminates Costs Associated with:**
 - Removal of asphalt or concrete
 - Excavation
 - Hauling
 - Fill material and compaction
 - Disposal
 - **Replacement of asphalt or concrete**
 - Other
 - Disruption to critical operations
 - Business failures
 - Unhappy citizens
 - Traffic congestion

Traditional excavation to repair/replace utilities 17

BENEFITS OF TRENCHLESS TECHNOLOGIES

- Minimizes Road Closures
- Provides Access to Utilities
 Beneath Buildings, Roadways, and Landscaping without
 Disruption
- Allows for Replacement of Hazardous Materials such as Asbestos Cement Piping while minimizing exposure to workers

Asbestos cement piping

- Selected Trenchless Technology Pipe Bursting
 - Breaking existing pipe while simultaneously <u>pulling</u> in the new carrier line
 - Usually HDPE but Ductile Iron, Steel, and PVC can be used
 - Pipe pulling distances
 - 0 350' (very common)
 - > 1,000' are rare but done
 - Pipe diameter same size or one size larger common
 - Surface cover needed

Pipe bursting steps

- Pipe Bursting Replaces Many Types of Pipe
 - Cast Iron
 - Clay tile
 - Concrete
 - Reinforced concrete
 - Asbestos cement
 - Polyethylene (PE) and Polyvinyl chloride (PVC)
 - Ductile iron
 - Steel

Vitrified clay pipe

Ductile iron pipe

Cast iron pipe

Pipe Bursting Overview

Static Head - The head is simply pulled through the old pipe by a heavy-duty pulling device (no internal moving parts)

Pneumatic Head - Uses pulsating air pressure to drive forward and burst old pipe

Hydraulic Head - Expands as it is pulled through, bursting both the old pipe and heavy joints

- Pipe Bursting Process Step 1
 - Inspect existing sewer by CCTV
 - Excavate machine and new pipe insertion pits
 - Excavate service pits, if required
 - Pits should be properly shored and maintained dry

- Pipe Bursting Process Step 2
 - Prepare machine pit
 - Set up pipe bursting machine in pit
 - Push rod string through existing pipe from machine pit to new pipe insertion pit

- Pipe Bursting Process Step 3
 - Rod string emerges at new pipe insertion pit
 - Attach pipe bursting head and new replacement pipe to the rod string
 - HDPE pipe already fused into a single continuous length and ready for pull back replacement process

- Pipe Bursting Process Step 4
 - Rod string pulls bursting head towards machine pit
 - Bursting head breaks existing pipe and pushes broken pieces into surrounding ground, creating a new tunnel
 - Bursting head advances towards machine pit and installs new HDPE pipe in place

Pipe Bursting Process (Video)

Pipe Bursting Process (Video)

Benefits of Pipe Bursting

- Installs a new pipe
- Eliminates up to 85% of excavation
- Prevents damage follows path of existing utility reducing risk of utility strikes
- Reduces project engineering expense when compared to utility relocation design
- Allows for increase in pipe size
- Proven technology

Typical excavation for pipe bursting

- Project Replace Asbestos Cement Water Mains, Valves, and Hydrants
 - Asbestos cement water mains operating beyond original design life
 - Water mains required periodic point repairs
 - Located under sensitive areas including live electric lines and active traffic flow
 - Daily operations sensitive to loss of water service during construction
 - Underground utility conflicts and water mains routed through storm water structures

Aerial Photo of Robins AFB Location of replaced water main

- Project Approach
 - Planning
 - Preparation
 - High density polyethylene (HDPE) fusing
 - Pre-chlorination and testing
 - Excavation and confirmation
 - Valve and tee assembly
 - Water main replacement
 - Valve and hydrant replacement
 - Restore service
 - Restore site

Page Road water main replacement site

Planning

- Work awarded as design build
- Complete investigation of existing system
- Design new system
- Submit plans for regulatory approval
- Coordinate with Fire Department and other Base personnel
- Selected pipe bursting as trenchless technology to complete water main upgrade

Location of water main replacement along Page Road

- Preparation
 - HDPE fusing

HDPE pipe storage on-site

HDPE pipe fused on-site

HDPE pipe welding/fusing machine

Preparation

• Pre-chlorination and testing

Valve assembly for disinfection of HDPE pipe

Injection of disinfection fluid into HDPE pipe

- Preparation
 - Excavation and confirmation

Exposing existing utilities

Erosion control

Exposing existing water pipe

Safety fence

- Preparation
 - Valve and tee assembly

Assembling fittings

Preparing valves

New valves and fire hydrants

Water Main Replacement

Removing existing pipe at access pit

Pipe bursting access pit

Water Main Replacement

Pipe bursting pulling equipment

New HDPE pipe being pulled in place

Water Main Replacement

Splitter entering existing pipe

Installation of new of HDPE pipe

Expander head entering existing pipe

Valve and Hydrant Replacement

Installing new valve assembly

Lowering new valve in place

Restore Service

New pipe and valve installed

New fire hydrant installed

Thrust block

Restore Site

Erosion control matting

Access pit restoration

Hydro seeding disturbed area

Project Results

- Completed scope of work on time and under budget
- Successfully maintained water service for critical operations
- Zero utility strikes
- No interruption to vehicular and pedestrian traffic

Page Road water main replacement site

SUMMARY

- Much of the Underground Utility Infrastructure across United States is Reaching End of Its Design Life
- Beginning to See Signs of Problems
 - Sinkholes
 - Interruption in service
 - Reduced flows
 - Overloaded treatment plants
- High Cost to Repair or Replace Using Traditional Excavation Technologies
- Trenchless Technologies Offer One Solution
- Robins AFB Proactively Upgrading Underground Infrastructure

QUESTION / COMMENTS

Contact Information:

Jonathan Raymer, PE Utility Program Manager jonathan.raymer@tepa.com (770) 616-7523

New Business and Program Closing

Ms. Becky McCoy EAB Installation Co-chair

Next EAB Meeting

Thursday, 5 November, 2009

